Hematopoietic stem cells (HSC) persist throughout life by undergoing extensive self-renewal divisions while maintaining an undifferentiated state. The mechanisms that support HSC self-renewal change throughout the course of development as temporal changes in transcriptional regulators coordinate distinct genetic programs in fetal, post-natal and adult HSCs. These self-renewal programs are often ectopically activated in leukemia cells to drive neoplastic proliferation and high expression of HSC-associated genes predicts a poor prognosis in acute myelogenous leukemia (AML). In this regard, it was recently shown that expression of the transcriptional regulator BCLAF1 (Bcl2 associated transcription factor 1) is increased in AML blasts relative to normal precursor populations and suppression of BCLAF1 causes reduced proliferation and induction of differentiation to a dendritic cell fate. These findings raise the question of whether BCLAF1 may regulate normal as well as neoplastic self-renewal programs.

We find that Bclaf1 is highly expressed in HSCs versus committed bone marrow populations consistent with a potential role for this gene in HSC functions. To test whether BCLAF1 regulates HSC development and hematopoiesis, we used germline loss of function mice. Bclaf1-/- mice succumb to pulmonary failure shortly after birth due to poor lung development, so we assessed prenatal hematopoiesis. Bclaf1-deficient mice had significantly reduced HSC and hematopoietic progenitor cell (HPC) frequencies and numbers despite normal fetal liver cellularity. To determine if Bclaf1 is required for HSC function during fetal development, we performed competitive reconstitution assays. Fetal liver cells from Bclaf1+/+or Bclaf1-/-mice were transplanted along with wild-type competitor bone marrow cells into lethally irradiated recipient mice. Compared to recipients of Bclaf1+/+fetal liver cells, recipients of Bclaf1-/-cells had a significantly lower percentage of donor-derived leukocytes at all time points after transplantation as well as reduced percentage of donor HSCs at 16 weeks post-transplant. Notably, all leukocyte populations (B cells, T cells, granulocytes and macrophages) from Bclaf1-/-donors were reduced consistent with an abnormality in HSC repopulating activity rather than a defect in a specific differentiation pathway. Consistent with these findings, Bclaf-deficient cells did not engraft in competitive transplants with limiting numbers of sorted fetal liver HSCs whereas sorted wild-type Bclaf1+/+cells effectively reconstituted hematopoiesis in recipient mice. In addition, Vav-cre:Bclaf1flox/floxmice, which have selective deletion of Bclaf1 in hematopoietic cells, have reduced frequencies and numbers of fetal liver HSCs identical to the findings observed in germline Bclaf1-/-mice. These results show that loss of Bclaf1 leads to defective development and repopulating activity of fetal HSCs.

Interestingly, when adult mice are successfully engrafted with Bclaf1-deficient HSCs, the donor HSCs suffer no additional functional impairment. Furthermore, in secondary transplant experiments Bclaf1-deficient HSCs maintain long-term repopulating activity. Thus, Bclaf1 may have distinct functions in fetal versus adult HSC self-renewal. Collectively, our findings reveal Bclaf1 is a novel regulator of fetal HSC function and suggest that it may have distinct functions in different developmental contexts.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution